

Highlights of the Mini Workshop on Experiments and Detectors

Rafael Coelho Lopes de Sa University of Massachusetts Amherst 01/21/2018

Contents

- The workshop happened last week, Thursday and Friday. <u>http://iasprogram.ust.hk/hep/2019/workshop_cc.php</u>
- It was roughly divided in the following parts:
 - Beam energy and backgrounds
 - Vertex detectors
 - Trackers
 - Calorimeters
- I will try to do the summary in the same order

Physics requirements Future experiments and detectors

Paolo GIACOMELLI

Higher luminosity for circular colliders Higher energy for linear colliders

Physics requirements

- Very precise knowledge of beam spread!
 - Can be done with μ⁺μ⁻ events
- For all cross-sections Luminometer precision!
 - Acceptance known to ~2μm
- Many measurements require detector acceptance ~5 times better than LEP
 - Acceptance of low p objects must be kept high
- Good π⁰ identification and direction
- b/c-tagging much better than LHC
 - High efficiency and purity, little p dependence

Due to extreme statistics, the requirements at the Z are the most demanding ones

Paolo GIACOMELLI

- σ(E)/E~10%/√E EM energy resolution
- σ(E)/E~30%/√E for jet energy resolution
- Flavor tagging
 - 🔹 Decay length
 - Jet kinematic variables
 - Semi-leptonic decays
- Excellent b/c separation (much better than LHC detectors)
- **PID** for π^{+-} separation from other particles
- Low energy π⁰ reconstruction
- 20-50 improvements on all EW observable measurements
- Measure Higgs couplings to ~1% level or better
- Discover possible deviations from the SM
- much more...

Nikolai MUCHNOI

Beam energy calibration

From FCC-ee CDR

- Beam energy calibration by Resonant Depolarization is the basis for the precise measurements of the Z and W masses with a precision of ~100 keV and ~500 keV correspondingly.
- About 200 polarized pilot bunches/ring will not collide just used for frequent beam energy measurements by RD.

- RD approach requires:
 - polarized beam,
 - ► polarimeter & depolarizer.

Accuracy limitations ($\Delta E_{cm}/E_{cm} \simeq 1$ ppm):

- ▶ rare measurements interpolation,
- ▶ non-flat orbit B_{\parallel} affects Ω ,
- ► $E_{\text{beam}}(i.p.) \neq \langle E_{\text{beam}} \rangle$,
- ► collision angle uncertainty, etc.

^e FCC-ee polarimeter: x-z plane

Blue bars – 2D silicon pixel detectors for scattered electrons & photons.

- Detecting both scattered photons & electrons increases the reliability of beam polarization measurement.
- FCC-ee polarimeter provides $\simeq 1$ % / s accuracy for ζ_{\perp} .

Georgios VOUTSINAS

Beam background

Synchrotron radiation

- Unlike in linear colliders, SR is expected to be a source of bkg on FCCee detectors
- Main source comes from the last bend, but contribution is expected also from FF quads

Beamstrahlung induced backgrounds: Incoherent Pairs Creation (IPC), Coherent Pairs Creation (CPC), and $\gamma\gamma \rightarrow$ hadrons

- Smaller space charge density for FCCee bunches compared to ILC/CLIC bunches
- These backgrounds are expected to be less severe in comparison with linear colliders

Beam-gas interactions Radiative Bhabhas Very small backgrounds

Synchroton Radiation Background

Georgios VOUTSINAS

CLD max. occ. / subdetector, IPC & SR							
\sqrt{s} [GeV]	91.2	365					
VXDB	$\sim 10^{-5}$	$\sim 4.5 imes 10^{-4}$					
VXDE	$\sim 3.8 imes 10^{-5}$	$\sim 4 imes 10^{-4}$					
TE	$\sim 1.8 imes 10^{-5}$	$\sim 1.6 \times 10^{-4}$					

- A fraction of the last bend and Quad produced SR scatters off the mask and showers into the detector area
- Full simulation studies of SR effect on FCCee detectors showed that proper shielding, it can be reduced to almost negligible levels

Georgios VOUTSINAS

Bremsstrahlung induced background

hits/event qNoOfHits Entries 6 pT (GeV) N/BX FCCee 365 GeV 3.457 Mean 0.012 RMS 1.681 10 0.01 10-2 0.008 10-3 0.006 10 10-3 10-2 10-1 θ(raid) ee pairs in these pT (GeV) 0.004 N / BX rectangles reach FCCee 91.2 GeV typical VXD VXDB VXDE ITB ITE OTB OTE 10 hadrons 10-2 $\sqrt{\hat{s}_{\min}}$ [GeV] evts Z evts Top 10-3 2 0.00063 0.0078 0.00029 5 0.0043 10-3 10-2 10-1 θ(raid) 10 0.00015 0.0027

Massimo CACCIA

Vertex detectors

$$\sigma_{\tilde{y}}^2 = \frac{\sigma_{single\ point}^2}{n} \times \left[1 + 12 \frac{n-1}{n+1} \left(\frac{R_{mean}}{\Delta R}\right)^2\right] = 25 \,\mu\text{m}^2$$

Accelerator	a $[\mu m]$	b $[\mu m {\cdot} {\rm GeV/c}]$	$\sigma_{1} = a \oplus \frac{b}{b}$
LEP	25	70	$b_{ip} = a \oplus p \cdot \sin^{3/2}\theta$
SLC	8	33	
LHC	12	70	
RHIC-II	13	19	
ILC	< 5	< 10	ILD LOI 2009
CEPC:	5	10	CDR - 2018

The CEPC-CDR baseline vertex detector geometry

	R (mm)	z (mm)	$ \cos \theta $
Layer 1	16	62.5	0.97
Layer 2	18	62.5	0.96
Layer 3	37	125.0	0.96
Layer 4	39	125.0	0.95
Layer 5	58	125.0	0.91
Layer 6	60	(125.0)	0.90

about 4" 1/4 about 5" (do not forget wafers today are 8" in diameter)

R _{in} [mm]	Rout [mm]	n	σ _{single point} [μm]
16	32.5	3	2.3
16	16 60.0		3.7
16	340	5	6.0
16	340	7	6.9

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

$$\sigma_{m.s.} = R_{beam \, pipe} \times \theta_0 = \frac{b}{p \sin^{3/2} \theta}$$

Machine/Exp.	R _{bp} [mm]	Thickness [mm]	x/X₀ [%]	b _{beam pipe} [µm]
LEP/DELPHI	56	1.4	0.40	48
LHC/ATLAS	23.5	0.8	0.23	15
ILC/TESLA Det.	14	0.5	0.14	7
CEPC (CDR2018)	15	0.5	0.14	8

Vertex detectors: readout rate

CEPC Beam Induced Background at VXD

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10^{12} 1 MeV n_{eq}/cm^2 ·year]	2.1	5.5	6.2

≥ 2.4 hits/cm²/BX
 ≥ 20x20 µm² pixels ⇒ 1/4 Megapixel/cm²
 ≥ every hit, is generating a 3x3 pixel cluster ⇒ about 20 fired pixels/cm²/BX

⇒ targeting 1% occupancy, the maximum number of BX you can integrate is 125, namely

 $\Delta t = 85 \,\mu s \, for \, 1 \, cm^2 \, sensor$

meaning that I either have

ONE full frame read-out in less than 85 µs [independent from the no. of fired pixels]

or, in a data-driven (push) architecture,

🖲 2500 pixels (1% of the existing ones) addressed & read-out (effective read-out time ÷ no. fired pixels), namely 34 ns/pixel

Massimo CACCIA

Fast reading \rightarrow More power dissipated (CEPC current estimate <150 mW/cm²)

Vertex detectors: cooling

STAR tracker @RHIC (operational) 170 mW/cm², air cooled

TOTAL MATERIAL BUDGET: 0.4% X0. for the 2 lavers

CLIC-ILD conceptual design 50 mW/cm² (power pulsing)

(a) Outer cooling stream

(b) Inner cooling stream

Massimo CACCIA

Rafael LOPES DE SA

UMassAmherst

ALICE ITS (to be installed soon) x/X0 = 0.3% (not good enough for CEPC) 100 mW/cm², liquid cooled

CMS FPIX (operational) 700 mW/cm², 2-phase CO₂ cooled

ATLAS ITk Inner System (design) 700 mW/cm², 2-phase CO₂ cooled

Vertex detectors: new ideas

Microchannel cooling

Massimo CACCIA

Ladislav ANDRICEK

Rafael LOPES DE SA

If air cooling works: (namely if I have a power density ~ 20 mW/cm²)

Polyimide supports

SiC foam support

UMassAmherst

Trackers: full silicon

- Inner Tracker: 3 barrel layers + 7 forward disks per side
- Outer Tracker: 3 barrel layers + 4 forward disks per side
- → microstrips size (50 µm x 1-10 mm)
 - → first inner tracker disk pixelated like vertex detector
- → total sensitive area = 195.6 m²

Emilia LEOGRANDE

CCLD Tracking Performance

Achieved transverse momentum resolution of \sim 7x10⁻⁵ GeV⁻¹ for 45 GeV muons at normal incidence (corresponding to required accuracy for Z width measurements)

 curves do not saturate at high momenta => resolution dominated by multiple scattering

→ lightweight tracker:

- → sensitive thickness: 200 µm per layer
- 1% X₀ per layer (sensitive + liquid cooling + connectivity) + 2.5% X₀ main support, cooling pipes, cabling routes

R&D for future silicon trackers and vertex detectors

Emilia LEOGRANDE

UMassAmherst

Integrated HR-CMOS

- integrated CMOS sensor on High-Resistivity substrate
- tests with INVESTIGATOR analog prototype chip in TowerJazz 180 nm HR-CMOS process (ALICE development): 20x20 - 50x50 μm² pitch
 - for 28x28 μm², with external readout:
 ~99.3% efficiency, <5 ns timing, σ_{SP} ~ 4 μm
- ongoing work to design *fully integrated* CLICTD chip: 30x300 μm² pitch, be thinned to 50-100 μm
- plan to use smaller feature size processes in the future
 to become an option for the vertex detector as well

Monolithic SOI sensors

- Silicon-On-Insulator (SOI): sensor and electronics integrated on single wafer with high-resistivity substrate
- Cracow SOI test chip in 200 nm LAPIS SOI process
 - + for 500 μm thick sensors and 30x30 μm^2 pitch
 - => >99% efficiency, σ_{SP} ~ 4.5 μm
- ongoing work is the production of CLICPS vertex test chip, targeted to Linear Collider vertex requirements: $20x20 \ \mu\text{m}^2$ pitch, snapshot readout of analog time and charge measurement, >= 100 \ \mu\mm m thickness
- promising option for tracker and also for stringent vertex requirements

Wei-Ming YAO

PID with Silicon Trakers

•FST in CDR has few concerns:

- -Limited dE/dx
- Double sided strip layers with higher material budget
- •TOF with LGAD pixelate with 10 ps timing:
 - -Replacing outer strip layers with LGAD layer to reduce material budget.
 - -Providing timing for PID up to 10 GeV.
- •RICH for PID up to 50 GeV: 🔨
 - -Minimizing material budget

•MWPC, SiPM, HPDs...

-Cherenkov light detection:

go all the way to 50GeV?

Do we need to

•LGAD pixelate detector for tracking and photon.

- Pros: PID will help jet-charge and flavor tagging.
- Cons: Additional material budget to degrade the detector performance.

Francesco GRANCAGNOLO

Trackers: drift chambers

IDEA Drift Chamber (CEPC and FCC-ee)

2.5	Coil	PSHW: 2 crossed layers of u-well (400 um x 500 mm) <i>in barrel and forward regions</i> SOT: 2 crossed Si u-strip (50 um x 100 mm)	drift chamber service area	[mm] 350 350	Rmtj [mm] 2000 2000	±(20	[mm] ±2000 00÷2250)		
		layers of 0.5% X0 in barrel and forward regions	# of laye # of cell	rs s	112 56448	min 192 a	11.8 mm - t first layer	– max 14.9 m – 816 at last la	m aye
	СН	DCH 56448 (~1.4 cm) cells (almost the same just minor differences in the overall dimension)	average cel average stere transverse res	l size o angle solution	13.9 mm 134 mrad 100 μm	min min 8	11.8 mm - 43 mrad - 30 μm with φ	 max 14.9 m max 223 mra cluster timing 	m ad
		SVX outer: 2 crossed Si u-strip (50 um x 1 mm) layers (0.5 X0)	longitudinal re	solution	750 µm	6	00 µm with	cluster timing	
		SVX forward: 4 single Si pixel (50 um x 50 um) layers of 0.3% X0	thickness [mm]	inner wall 0.2	gas 1000	wires 1000	outer wall 20	service area 250	
v -	0.5 1.0 1.5 2.0 2.5		X ₀ [%]	0.08	0.07	0.13	1.2	4.5	16

Drift chamber - performance

Barrel

IDEA

Francesco GRANCAGNOLO

PID with dN/dx and timing

2.2%

Forward

counting and timing

Drift chamber structure

Francesco GRANCAGNOLO

Very light wire cage structure

Wire tension compensation

Trackers: TPC

Why use TPC detector as the tracker detector?

- Motivated by the H tagging and Z
- TPC is the perfect detector for HI collisions ...(ALICE TPC...)
- Almost the whole volume is active
- Minimal radiation length (field cage, gas)
- Easy pattern recognition (continuous tracks)
- PID information from ionization measurements (dE/dx)
- Operating under high magnetic field
- MPGD as the readout

Huirong QI

Overview of TPC detector concept

TPC detector concept:

- Under 3 Tesla magnetic field (Momentum resolution: ~10⁻⁴/GeV/c with TPC standalone)
- Large number of 3D space points(~220 along the diameter)
- dE/dx resolution: <5%</p>
- ~100 μm position resolution in rφ
 - ~60μm for zero drift, <100μm overall
 - Systematics precision (<20µm internal)
- **TPC material budget**
 - □ <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- **2-hit resolution in r** ϕ : ~2mm
- □ Module design: ~200mm×170mm
- Minimizes dead space between the modules: 1-2mm

TPC trackers: technologies

Micromegas : Micromesh gaseous chamber

GEM : Gas Electron Multiplier

Paul COLAS

Gridpix: "digital TPC"

UMassAmherst

SACLAY Micromegas

TPC trackers: technologies (2)

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

Huirong QI

TPC trackers: Ion Back Flow (1)

Huirong QI

UMassAmherst

To conclude, the TPC will be able to be used if the Gain \times IBF can be controlled to a value smaller than 5.

	ALICE TPC	CEPC TPC
Maximum readout rate	>50kHz@pp	w.o BG?
Gating to reduce ions	No Gating	No Gating
Continuous readout	No trigger	Trigger?
IBF control	Build-in	Build-in
IBF*Gain	<10	<5
Calibration system	Laser	NEED

TPC trackers: Ion Back Flow (2)

At the ILC, the bunch trains last about 1ms every 200 ms, giving rise to ion disks slowly drifting to the cathode

Caveats : if too much intensity of the gun is used, space charge affects the electric field and gives rise to underestimate of the backflow! See M. Ball et al, JINST 2013 (MPGD2013, Zaragoza)

Deviation [µm] r=1.717 m 10 E r=0.800 m r=0.700 m r=0.600 m -10 r=0.550 m -20 =0.500 m r=0.475 m -30 =0.450 m -40 r=0.425 m $\Delta z_{1 BT}^{T2K} = 855 \text{ mm}$ -50 =0.400 m $\Delta z_{2 BTs}^{T2K} = 1710 \text{ mm}$ -60 =0.385 m -70 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Drift length [mm]

Calorimetry EM high granularity calorimeter

Jean-Claude Brient

	Np.e. /MIP	linearity	Longitudinal segmentation	Timing (ps) at mip	cost
Scintillator (3 mm & SiPM)	10-20	<1000 mip	***	?? (pb related to noise)	**
Silicon (300µm)	24000	No limit	***	30/(Nlayer) ^{1/2}	*
Shashlik type	***	Yes	*	30	***

Good S/N @mip for <1mm thickness, timing measurement, small pixel size, ... \rightarrow Silicon

	X0 (cm)	λ _ι (cm)	Ratio	Molière Rad (cm)	Mechanics	cost
Fe	1.76	16.8	9.5	1.69	***	***
Cu	1.43	15.1	10.6	1.52	***	*
W	0.35	9.6	27.4	0.93	**	*
Pb	0.56	17.1	30.5	1.00	*	***

Good ratio, small Molière radius and good mechanical behaviour \rightarrow Tungsten

5

Calorimetry EM SiW calorimeter

CMS HGCAL

- Readout every 25 ns, active cooling , large number of layers
- High level of radiation (10¹⁶ n/cm²/year) ... variation of the gain of the diodes
- The pile-up mitigate the power of PFA

FCCee/CEPC

- Readout every 25 ns (hypothesis)
- No problem of radiation
- Need active cooling (It allows pixels size of 6x6 mm see my presentation at CEP(workshop 2017)
- <u>Small pixel allows time measurement /particle</u> (like in ATLAS or CMS)
- Small pixel allows to run at Z Pole (occupancy)... to be studied !!

Test Beam DESY July 2018

Passive cooling

CALICE ECAL SiW Test Beam at DESY - 2017

Active cooling

Jean-Claude Brient

Summary from the MIP fits of the 98% available channels MIP summary (all slas) TAYERS TAYERS</

Passive cooling ramp set up test on a 3 layers prototype

20

Sarah ENO

Calorimetry EM crystal calorimetry

Calorimetry HAD high granularity calorimeter

- Figure of merit: separating W and Z bosons in their hadronic decays .
- This translates into a jet energy resolution requirement of \sim 3-4% over a wide jet energy range (~ 30% / $\!\sqrt{E}$).
 - A factor of two improvement w.r.t. traditional jet measurement

WW \rightarrow 4j and ZZ \rightarrow 4j

SDHCAL

Both adapted from ILD

AHCAL barrel

Absorber

Jianbei LIU

- Fe, 40 layers \times 2cm, $5\lambda_{I}$
- Active layer
- SDHCAL
 - glassRPC, 6mm thick
 - cell-size: 1cm×1cm
- AHCAL
 - Sci+SiPM, ~5mm thick
 - cell-size: 3cm×3cm

Calorimetry HAD high granularity calorimeter

RPC HCAL Prototype

SDHCAL Prototype

80 90

E_{beam} [GeV]

70

Dual readout calorimetry

SiPM + :

- + compact readout (no fibres sticking out)
- + longitudinal segmentation possible
- + operation in magnetic field
- + larger light yield (main limitation to Čerenkov signal)
- + high readout granularity \rightarrow particle flow "friendly"
- + photon counting (calibration)

Hadron resolution

DR method

Machine Learning

Roberto FERRARI

Conclusions

- Intense two days about detectors for future circular e⁺e⁻ colliders.
- Vertex:
 - Very strict requirements may require new mechanical designs to keep material under x/X0 < 0.1% per layer.
- Tracker:
 - Both silicon, TPC and drift chambers are potential solutions for future detectors.
 - Strict requirements for momentum resolution and PID
- Calorimeters:
 - High granularity is a requirement for particle flow reconstruction.
 - EM calorimeter based on Si+W has excellent segmentation. Homogeneous crystal calorimetry with dedicated timing layer is an option with excellent resolution.
 - Dual readout calorimeters are an attractive possibility with SiPM readout.